





# Introduction

## Background

- Goal: Programs aim to encourage pursuit of STEM+C careers among female & underserved students <sup>1,2</sup>
  - **Curated Pathway to Innovation** (CPI)
  - Web app for middle schoolers to learn about and foster interest in computer programming
- Difficulty: Interest usually decreases during middle • school if no intervention takes place  $^{3,4}$
- Decline may be due to  $\bullet$ 
  - $\circ$  Lack of informal STEM experience (iSTEM) <sup>5</sup>
  - Low Science Achievement Value (SAV)<sup>6</sup>

## Literature

Constructs appeared to be influenced in the following ways:

- SAV  $\rightarrow$  Resources and Parental Education <sup>7,8</sup>
- Resources and Parental Education  $\rightarrow$  iSTEM <sup>9</sup>
- iSTEM  $\rightarrow$  Interest <sup>10</sup>
- Interest  $\rightarrow$  Aspirations <sup>11</sup>

**Purpose:** To explore the relationship between iSTEM, Resource Variables, and Interest and Aspiration in CP

# **Research Questions**

- 1. Can "iSTEM" be modeled as a single latent factor model?
- 2. How do students' iSTEM scores vary based on their resources? (i.e., material, social, time, parental ed.)
- (a) Is there an indirect effect of iSTEM on aspirations by 3. way of interest? (b) Are the effects still significant after accounting for resources?

# Method

**Data**: Survey responses pulled from the CPI project.

**Participants**: N = 636, Mean age = 13.5 years, 43.4% female, 45.4% URM, 15 sites in US

### Data Preparation

- Compute average scale scores
- Defined and dichotomized resource variables

### To Address...

- RQ 1 Confirmatory Factor Analysis (CFA)
- RQ 2 ANOVA

RQ 3 - Structural Equation Model, Mediation Analysis

**Software**: R Studio (LAVAAN package)

# The Effect of Informal STEM Experience: A Mediation Analysis On Interest and Career Aspirations in Computer Programming Among Middle Schoolers

David Tzu-Chien Lin<sup>1</sup>, Teresa Ober, Ph.D.<sup>2</sup>, Ying Cheng, Ph.D.<sup>2</sup> University of California, Los Angeles<sup>1</sup>, University of Notre Dame<sup>2</sup>



### **Research Question 3**

Figure 4. Analysis of the Mediation Pathways Between iSTEM, Interest, and Aspiration, accounting for Resource Variables



iSTEM's direct effect AND indirect effect on Aspiration are significant, indicating a partial mediation model

| 21. ANOVA on ISTEIN and Resource Variables                              |                         |       |        |        |                    |  |  |
|-------------------------------------------------------------------------|-------------------------|-------|--------|--------|--------------------|--|--|
| esource Variable                                                        | Estimated Marginal Mean |       | р      | F      | $\mathfrak{n}_p^2$ |  |  |
|                                                                         | Yes                     | No    |        |        |                    |  |  |
| rnal Ed. Known                                                          | 0.267                   | 0.199 | <.001* | 12.643 | 0.022              |  |  |
| ernal Ed. Known                                                         | 0.261                   | 0.205 | 0.03   | 4.728  | 0.014              |  |  |
| rnal Above College                                                      | 0.332                   | 0.267 | <.001* | 21.038 | 0.018              |  |  |
| ernal Above College                                                     | 0.319                   | 0.264 | <.001* | 12.526 | 0.014              |  |  |
| ds >1 Hour on CP                                                        | 0.294                   | 0.215 | <.001* | 27.526 | 0.032              |  |  |
| Computer Access                                                         | 0.254                   | 0.185 | <.001* | 13.11  | 0.007              |  |  |
| vs a Programmer                                                         | 0.317                   | 0.207 | <.001* | 59.282 | 0.058              |  |  |
| ler (Being Male)                                                        | 0.253                   | 0.235 | 0.025  | 5.001  | 0.001              |  |  |
| ficant after Bonferroni Correction (corrected critical value = 0.00625) |                         |       |        |        |                    |  |  |

| For Mediation Pathways                                               |                                  |  |  |  |
|----------------------------------------------------------------------|----------------------------------|--|--|--|
| Paths                                                                | Standardized<br>Coefficient (SE) |  |  |  |
| Total Effects                                                        | 0.229 (0.038)*                   |  |  |  |
| Indirect Effects                                                     |                                  |  |  |  |
| iSTEM $\rightarrow$ Interest $\rightarrow$ Aspiration (A $\times$ B) | 0.115 (0.024)*                   |  |  |  |
| Direct Effects                                                       |                                  |  |  |  |
| iSTEM $\rightarrow$ Interest (A)                                     | 0.183 (0.038)*                   |  |  |  |
| Interest $\rightarrow$ Aspiration (B)                                | 0.626 (0.024)*                   |  |  |  |
| iSTEM $\rightarrow$ Aspiration (C)                                   | 0.114 (0.030)*                   |  |  |  |

### Implications

### Limitations

### **Future Direction**

Further experimental or quasi-experimental work

To establish that information STEM experiences results in more positive attitudes towards STEM+C careers

<sup>2,5</sup> Edy Hafizan Mohd Shahali, Lilia Halim, Mohamad Sattar Rasul, Kamisah Osman & Nurazidawati Mohamad Arsad (2019) Students' interest towards STEM: a longitudinal study, Research in Science & Technological Education, 37:1, 71-89, DOI: 10.1080/02635143.2018.1489789

<sup>3</sup> George, R. (2006). A cross-domain analysis of change in students' attitudes toward science and attitudes about the utility of science. International Journal of Science Education, 28(6), 571–589.

John H. Falk, Nancy Staus, Lynn D. Dierking, William Penuel, Jennifer Wyld & Deborah Bailey (2016) Understanding youth STEM interest pathways within a single community: the Synergies project, International Journal of Science Education, Part B, 6:4, 369-384, DOI: 10.1080/21548455.2015.1093670

<sup>6,7</sup> Jones, MG, Chesnutt, K, Ennes, M, Mulvey, KL, Cayton, E. Understanding science career aspirations: Factors predicting future science task value. J Res Sci Teach. 2021; 1–19. https://doi.org/10.1002/tea.21687

<sup>8,9</sup> Svoboda, R. C., Rozek, C. S., Hyde, J. S., Harackiewicz, J. M., & Destin, M. (2016). Understanding the Relationship Between Parental Education and STEM Course Taking Through Identity-Based and Expectancy-Value Theories of Motivation. AERA Open. https://doi.org/10.1177/2332858416664875

<sup>10,12</sup> Young, J. R., Ortiz, N. A., & Young, J. L. (2017). STEMulating interest: A meta-analysis of the effects of out-of-school time on student STEM interest. International Journal of Education in Mathematics, Science and Technology, 5(1), 62-74. DOI:10.18404/ijemst.61149

| A | С | k |
|---|---|---|
|   |   |   |

• Same after controlling for resources and schools



# Discussion

Results suggest positive answers to the research questions

Informal STEM Experience is correlated with, and has direct and indirect effects on CP Interest and Aspirations

<u>Result is in accordance</u>: Findings of significant differences in Interest pre and post "Out of School" interventions (Young, Ortiz, & Young, 2017)<sup>12</sup>

Organizations: Providing more opportunities for informal STEM experience to combat declining interest

Many "I don't know" responses for Parental Education; cannot analyze socioeconomic status

Analyses are purely correlational

# References

<sup>11</sup> Brown, Duane. (2002). Career Choice and Development. Hoboken, NJ: Jossey-Bass.

Brown, P., Concannon, J.P., Marx, D., Donaldson, C.W., & Black, A. (2016). An Examination of Middle School Students' STEM Self-Efficacy with Relation to Interest and Perceptions of STEM. Journal of STEM Education: Innovations and Research, 17, 27-38.

<sup>1</sup> Dou, R, Hazari, Z, Dabney, K, Sonnert, G, Sadler, P. Early informal STEM experiences and STEM identity: The importance of talking science. Science Education. 2019; 103: 623-637. https://doi.org/10.1002/sce.21499

<sup>4</sup> Osborne, J. F., Simon, S., & Collins, S. (2003). Attitudes towards science: A review of the literature and its implications. International Journal of Science Education, 25(9), 1049–1079.

# nowledgement

• Learning Analytics and Measurement in Behavioral Sciences (LAMBS) Lab

Bettina Spencer, Ph.D., Saint Mary's College • Paul Brenner, Ph.D., University of Notre Dame