Predicting Middle School Students’ Self-Efficacy in Computer Programming Using Linear Mixed Models

Charlotte Hirsch¹, Teresa Ober, Ph.D.², Ying Cheng, Ph.D.²
Rice University¹, University of Notre Dame²

Introduction

- Self-efficacy (SE): individual’s beliefs regarding their performance and capacity in a particular domain
 - According to Social Cognitive Career Theory (SCCT), SE promotes career interests and goals¹
- Curated Pathways to Innovation (CPI): web app providing a collection of STEM and computer science (STEM+C) activities for middle school students³
 - Aims to boost self-efficacy and career aspirations in STEM+C, particularly among female and URM students (Black/African-American, Hispanic/Latino, American Indian, Asian Native)²
 - Ultimate goal is to expand diversity in STEM+C education and employment
 - Students complete activities to earn badges; after each badge they fill out a survey asking about task-specific self-efficacy (specific to badge) and global self-efficacy (computer programming in general)

Research Questions

- RQ1: Does task-specific SE predict global SE?
- RQ2: Are there differences in students’ task-specific and global SE on the basis of gender, URM-status, or the interaction of these two demographic variables?
- RQ3: Does gender, URM-status, or the interaction of these two variables predict global SE after accounting for variation explained by task-specific SE?

Sample

- 869 middle school students (mean age = 11.2, 42.8% female, 55.9% URM)
- 6082 survey responses
- 122 badges total

Materials

- Self-efficacy survey items are answered using a 5-point Likert scale (1=Strongly Disagree, 2=Disagree, 3=Neutral, 4=Agree, 5=Strongly Agree)
- Only including responses in which both self-efficacy items were answered

<table>
<thead>
<tr>
<th>Task-specific SE</th>
<th>Global SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>“I am good at the kinds of activities that were in this badge”</td>
<td>“I am good at computer programming”</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Task-Specific SE</th>
<th>Mean</th>
<th>SD</th>
<th>Median</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global SE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Items corresponding to task-specific and global SE

Table 2: Descriptive statistics for task-specific and global SE

Analysis

- Survey responses are nested under both student and badge → non-independence within clusters
 - Responses completed by the same student are non-independent
 - Responses corresponding to the same badge are non-independent

<table>
<thead>
<tr>
<th>Task-specific SE</th>
<th>Specific SE</th>
<th>Global SE</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Specific SE Model</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task1</td>
<td>gse ~ tse + (1</td>
</tr>
<tr>
<td>Task2</td>
<td>tse ~ female1*urm1 + (1</td>
</tr>
<tr>
<td>Task3</td>
<td>gse ~ tse + female1*urm1 + (1</td>
</tr>
</tbody>
</table>

Table 3: Linear mixed-effects models of task-specific self-efficacy (tse) and global self-efficacy (gse)

Results

- RQ1: Task-specific SE was significantly and positively predictive of global SE (β = 0.49, p < 0.001)
- RQ2: Gender was a significant predictor of task-specific SE, but not global SE
 - Female students had lower task-specific self-efficacy (β = -0.20, p = 0.048)
 - Neither URM-status nor the gender-URM interaction were significant predictors of task-specific or global SE
- RQ3: After accounting for variation due to task-specific SE, neither gender, URM-status, nor the interaction of the two were significantly associated with global SE
 - Task-specific SE was the only significant predictor (β = 0.49, p < 0.001)

Discussion

- Limitations
 - Dichotomous coding of gender
 - Homogeneous term “URM” to categorize a heterogeneous group
 - Findings are all correlational
- Student and badge random effects both significantly explain variation in self-efficacy ratings
 - Individual differences in self-efficacy
 - Perhaps harder badges lead to diminished self-efficacy (area for future research)
- Boosting confidence through specific activities corresponds to higher general self-efficacy in STEM+C
- Reinforces importance of CPI and other resources to encourage students to pursue STEM+C and combat gendered and racialized stereotypes, in line with Social Cognitive Career Theory²

References

Acknowledgements

This work was supported by National Science Foundation grant SMA-1852457. “REU Site: Computational Social Science at the University of Notre Dame.” Thank you to Paul Brenner, Bettina Spencer, and the Learning Analytics and Measurement in Behavioral Sciences Lab at Notre Dame for their support and guidance.

Table 3: Linear mixed-effects models of task-specific self-efficacy (tse) and global self-efficacy (gse)

Figure 1: Student demographics by gender and URM-status

Figure 2: Nested data structure with clusters of survey responses at the student and badge level

Figure 3: Survey Responses